The Characteristic

Impedance of a

Transmission Line

So, from the telegrapher's differential equations, we know that the complex current $I(z)$ and voltage $V(z)$ must have the form:

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{+\gamma z} \\
& I(z)=I_{0}^{+} e^{-\gamma z}+I_{0}^{-} e^{+\gamma z}
\end{aligned}
$$

Let's insert the expression for $V(z)$ into the first telegrapher's equation, and see what happens !

$$
\frac{d V(z)}{d z}=-\gamma V_{0}^{+} e^{-\gamma z}+\gamma V_{0}^{-} e^{+\gamma z}=-(R+j \omega L) I(z)
$$

Therefore, rearranging, $I(z)$ must be:

$$
I(z)=\frac{\gamma}{R+j \omega L}\left(V_{0}^{+} e^{-\gamma z}-V_{0}^{-} e^{+\gamma z}\right)
$$

Q: But wait! I thought we already knew current $I(z)$. Isn't it:

$$
I(z)=I_{0}^{+} e^{-\gamma z}+I_{0}^{-} e^{+\gamma z} ? ?
$$

How can both expressions for $I(z)$ be true??

A: Easy! Both expressions for current are equal to each other.

$$
I(z)=I_{0}^{+} e^{-\gamma z}+I_{0}^{-} e^{+\gamma z}=\frac{\gamma}{R+j \omega L}\left(V_{0}^{+} e^{-\gamma z}-V_{0}^{-} e^{+\gamma z}\right)
$$

For the above equation to be true for all z, I_{0} and V_{0} must be related as:
$I_{0}^{+} e^{-\gamma z}=\left(\frac{\gamma}{R+j \omega L}\right) V_{0}^{+} e^{-\gamma z} \quad$ and $\quad I_{0}^{-} e^{+\gamma z}=\left(\frac{-\gamma}{R+j \omega L}\right) V_{0}^{-} e^{+\gamma z}$

Or-recalling that $V_{0}^{+} e^{-\gamma z}=V^{+}(z)$ (etc.)-we can express this in terms of the two propagating waves:
$I^{+}(z)=\left(\frac{+\gamma}{R+j \omega L}\right) V^{+}(z) \quad$ and $\quad I^{-}(z)=\left(\frac{-\gamma}{R+j \omega L}\right) V^{-}(z)$

Now, we note that since:

$$
\gamma=\sqrt{(R+j \omega L)(G+j \omega C)}
$$

We find that:

$$
\frac{\gamma}{R+j \omega L}=\frac{\sqrt{(R+j \omega L)(G+j \omega C)}}{R+j \omega L}=\sqrt{\frac{G+j \omega C}{R+j \omega L}}
$$

Thus, we come to the startling conclusion that:

$$
\frac{V^{+}(z)}{I^{+}(z)}=\sqrt{\frac{R+j \omega L}{G+j \omega C}} \quad \text { and } \quad \frac{V^{-}(z)}{I^{-}(z)}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}
$$

Q: What's so startling about this conclusion?

A: Note that although the magnitude and phase of each propagating wave is a function of transmission line position \boldsymbol{z} (e.g., $V^{+}(z)$ and $I^{+}(z)$), the ratio of the voltage and current of each wave is independent of position-a constant with respect to position z !

Although $V_{0}^{ \pm}$and $I_{0}^{ \pm}$are determined by boundary conditions (i.e., what's connected to either end of the transmission line), the ratio $V_{0}^{ \pm} / I_{0}^{ \pm}$is determined by the parameters of the transmission line only (R, L, G, C).
\rightarrow This ratio is an important characteristic of a transmission line, called its Characteristic Impedance Z_{0}.

$$
Z_{0} \doteq \frac{V_{0}^{+}}{I_{0}^{+}}=\frac{-V_{0}^{-}}{I_{0}^{-}}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}
$$

We can therefore describe the current and voltage along a transmission line as:

$$
\begin{aligned}
& V(z)=V_{0}^{+} e^{-\gamma z}+V_{0}^{-} e^{+\gamma z} \\
& I(z)=\frac{V_{0}^{+}}{Z_{0}} e^{-\gamma z}-\frac{V_{0}^{-}}{Z_{0}} e^{+\gamma z}
\end{aligned}
$$

or equivalently:

$$
\begin{aligned}
& V(z)=Z_{0} I_{0}^{+} e^{-\gamma z}-Z_{0} I_{0}^{-} e^{+\gamma z} \\
& I(z)=I_{0}^{+} e^{-\gamma z}+I_{0}^{-} e^{+\gamma z}
\end{aligned}
$$

Note that instead of characterizing a transmission line with real parameters R, G, L, and C, we can (and typically do!) describe a transmission line using complex parameters Z_{0} and γ.

